跟李沐学AI:视频生成类论文精读(Movie Gen、HunyuanVideo)

news/2025/2/1 19:34:07 标签: 人工智能

Movie Gen:A Cast of Media Foundation Models

简介

Movie Gen是Meta公司提出的一系列内容生成模型,包含了

3.2.1 预训练数据

Movie Gen采用大约 100M 的视频-文本对1B 的图片-文本对进行预训练。

图片-文本对的预训练流程与Meta提出的 Emu: Enhancing image generation models using photogenic needles in a haystack 流程相同。[2309.15807] Emu: Enhancing Image Generation Models Using Photogenic Needles in a HaystacktAbstract page for arXiv paper 2309.15807: Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystackhttps://arxiv.org/abs/2309.15807https://arxiv.org/abs/2309.15807https://arxiv.org/abs/2309.15807

原始视频数据由4秒至两分钟长度的数据组成,视频内容涵盖人文、自然、动物等多个领域。数据经过预处理后得到一系列的clip-prompts pairs(视频片段-提示词对) 。

每个clip(视频片段)大约4-16秒长,视频内容由单镜头拍摄,且不包含复杂的动作。

视频数据预处理流程如下:

Visual Filtering 

1. 过滤掉分辨率小于720px的视频

2. 数据集中60%的视频为横屏视频,40%为竖屏视频

3. 删去文字特别多的视频

4. 从长视频中抽取出单场景的4-16s的片段

5. 保证视频美学品质

6. 保证视频没有边框

Motion Filtering

删去运动幅度较小的视频,通过Meta内部的静态视频检测模型移除所有没有运动的视频,随后选出具有“合理”运动幅度的视频。

Content Filtering

删除重复的视频片段、对不同类型的数据进行重新采样,保证内容的均匀性。

Captioning

对每个视频片段使用llama3-Video创建准确、具体的prompts。70%的数据使用8B模型,30%的数据使用70B。

为了保证模型能够生成电影质感的运镜,训练了一个运镜分类器来对16类运镜进行分类,如变焦、平移。如果运镜分类结果置信度很高,则将这个运镜分类结果添加至提示词中。

Multi-stage data curation

Movie Gen将上述数据预处理流程分了三个阶段,每个阶段对于数据的筛选逐渐严格,使得模型可以由易到难逐步进行学习。

3.2.2 预训练

1. 首先使用text-to-image的数据对模型进行warm up热身训练,随后使用text-to-image和text-tovideo的数据进行联合训练。

2. 视频数据分辨率首先由256px提升至768px

3. 不断用更好的数据集和优化后的超参数对模型进行训练。

训练阶段:256 px T2I
  1. TP(张量并行度): 1
  • 指训练过程中使用的张量并行度。在这个阶段,没有应用张量并行。
  1. CP(检查点并行度): 1
  • 可能指的是检查点并行度。在这个阶段,没有应用检查点并行。
  1. bs/GPU(每个GPU的批量大小): 6
  • 指每个GPU在一次前向/后向传递中处理的样本数量。每个GPU处理6个样本。
  1. GPUs(GPU数量): 1536
  • 用于训练的GPU总数。这个阶段使用了1536个GPU。
  1. global bs(全局批量大小): 9216
  • 跨所有GPU的总批量大小。计算公式为 bs/GPU * #GPUs = 6 * 1536 = 9216。
  1. learning rate(学习率): 1e-4
  • 确定每次迭代时向损失函数最小值移动的步长。学习率设置为0.0001。
  1. iters(迭代次数): 210k
  • 训练过程中执行的总迭代次数。这个阶段运行210,000次迭代。
  1. seen samples(已见样本数): 1.94B
  • 表示模型在训练过程中暴露的总样本数。模型看到了大约19.4亿个样本。
训练阶段:256 px T2I/V
  1. TP(张量并行度): 4
  • 指训练过程中使用的张量并行度。张量并行度设置为4。
  1. CP(检查点并行度): 1
  • 可能指的是检查点并行度。在这个阶段,没有应用检查点并行。
  1. bs/GPU(每个GPU的批量大小): 2
  • 指每个GPU在一次前向/后向传递中处理的样本数量。每个GPU处理2个样本。
  1. #GPUs(GPU数量): 3072
  • 用于训练的GPU总数。这个阶段使用了3072个GPU。
  1. global bs(全局批量大小): 1536
  • 跨所有GPU的总批量大小。计算公式为 bs/GPU * #GPUs = 2 * 3072 = 1536。
  1. learning rate(学习率): 6e-5
  • 确定每次迭代时向损失函数最小值移动的步长。学习率设置为0.00006。
  1. #iters(迭代次数): 123k
  • 训练过程中执行的总迭代次数。这个阶段运行123,000次迭代。
  1. #seen samples(已见样本数): 173.6M
  • 表示模型在训练过程中暴露的总样本数。模型看到了大约1.736亿个样本。
训练阶段:768 px T2I/V
  1. TP(张量并行度): 4
  • 指训练过程中使用的张量并行度。张量并行度设置为4。
  1. CP(检查点并行度): 1 或 2
  • 可能指的是检查点并行度。在这个阶段,检查点并行度根据配置为1或2。
  1. bs/GPU(每个GPU的批量大小): 1
  • 指每个GPU在一次前向/后向传递中处理的样本数量。每个GPU处理1个样本。
  1. #GPUs(GPU数量): 6144 或 4096
  • 用于训练的GPU总数。这个阶段使用了6144或4096个GPU,取决于配置。
  1. global bs(全局批量大小): 1536、768 或 512
  • 跨所有GPU的总批量大小。计算公式为 bs/GPU * #GPUs。根据配置,它可以是1536、768或512。
  1. learning rate(学习率): 6e-5、3e-5、2e-5 或 1e-5
  • 确定每次迭代时向损失函数最小值移动的步长。学习率在0.00006、0.00003、0.00002和0.00001之间变化。
  1. #iters(迭代次数): 19.6k、11k、15.9k 或 28k
  • 训练过程中执行的总迭代次数。这个阶段运行19,600、11,000、15,900或28,000次迭代,取决于配置。
  1. #seen samples(已见样本数): 30.1M、16.9M、12.2M 或 14.6M
  • 表示模型在训练过程中暴露的总样本数。模型看到了大约3.01亿、1.69亿、1.22亿或1.46亿个样本,取决于配置。

Note:联合训练时,文本-图片对数据和文本视频对的数据保持在1:10左右的比例。

3.3 Fine Tuning 

为了保证生成结果的质量,finetuning的数据集规模可以较小,但是数据质量一定要有保障。因此finetuning的数据均由人为标注。

高质量的定义:良好的运镜、真实性、美学性、内容丰富、文本描述详细。

为了筛选高质量的数据集,Movie Gen使用连续的四个阶段对数据进行筛选:

1. 创建一个候选子集,对每个质量标准进行严格的限制,使用目标检测模型移除了只有小物体的视频。

2. 与Content Filtering一样,对第一阶段筛选后的视频进行重新采样,保证各个类别的视频均匀分布。

3. 人为找出具有电影质感的视频。

4. 人为对模型生成的提示词进行润色修改,同时加入详细的原数据:运镜、人物表情、物体和背景信息、具体的运动描述和光线信息。

模型架构

与预训练阶段保持一致

初始化

使用预训练后的checkpoint文件

节点数

64

GPU数量

512 H100 GPUs (每个节点 8 个GPUs).

Batch Size

相对较小(没有具体说明)

动态学习率

余弦学习率调度器 (Loshchilov and Hutter, 2017).

视频帧率

16秒长度的视频:16FPS;0.6–16秒长的视频:24FPS.

生成视频长度

支持生成10-16秒的视频

5. Model Averaging:不同数据子集、不同超参数训练出来的模型各有所长,为了利用不同checkpoint模型的优势、提升模型泛化性Movie Gen对SFT阶段不同的模型参数进行了平均操作,类似于Llama 3。

HunyuanVideo: A Systematic Framework For Large Video Generative Models

3. Data Pre-porcessing

与Movie Gen一致,Hunyuan Viedoe使用了图像-视频联合训练的策略,将视频分为五类、图像分为两类,以满足不同训练需求。原始数据涵盖人物、动物、风景等多个领域,筛选时设定了最低时长、画质、构图、色彩等严格标准,优先选用高质量数据,显著提升了模型性能。

3.1 Data Filtering

1. 使用PySceneDetect把原始视频分割为单镜头拍摄的视频片段。

2. 使用OpenCV中的拉普拉斯算子找出视频中最“干净”的一帧作为视频开头。

3. 使用内部的VideoCLIP模型计算每个视频的embeddings,使用embeddings计算余弦距离,删去重复数据。使用K-Means算法对数据进行重新采样以保持各种类型数据的多样性。

4. 使用Dover模型筛选更为美观的视频片段。单独训练了一个用于筛选清晰度的视频。

5. 删去了完全禁止和动作幅度较小的视频。(estimated optical flow)

6. 使用PySceneDetect和Transnet v2获得场景边界信息

7. 使用OCR模型移除文字过多的视频片段

8. 使用目标检测模型移除敏感信息

SFT阶段,约有100万条数据,同样采用人为标注的数据进行微调。

3.2 Data Annotation 

结构化说明文本:HunYuanVideo使用JSON来对图片信息进行说明。JSON数据包括:Short Description描述场景的主要内容、Dense Description详细、完整的描述、Background描述物体所在的背景、Style描述视频的风格、Shot Type描述视频的具体视角、Lighting描述视频的光线情况、Atmosphere描述视频氛围如Cozy、Tense等。

此外,HunYuanVideo扩展了JSON结构,以包含额外的元数据派生元素,包括源标签、质量标签以及来自图像和视频元信息的其他相关标签。

为了防止过拟合,HunYuanVideo通过精心设计的Dropout及排列和组合策略,根据这些多维度的描述信息来合成长度和模式各异的字幕,旨在提高生成模型的泛化能力。

HunYuanVideo训练了一个运镜分类器来预测14个不同的运镜类型,包括变焦放大、变焦缩小、向上平移、向下平移等。高置信度的分类结果将被添加至数据的JSON说明文本中。

通过上述两项工作的数据预处理过程,可以看出数据质量对模型的重要性。


http://www.niftyadmin.cn/n/5839538.html

相关文章

高项第五章第一节——信息系统工程之软件工程

5_1 软件工程 软件工程(Software Engineering),是指应用计算机科学、数学及管理科学等原理,以工程化的原则和方法来解决软件问题的工程。 架构设计:软件架构为软件系统提供了一个结构、行为和属性的高级抽象 架构设…

C语言教程——文件处理(2)

目录 前言 一、顺序读写函数(续) 1.1fprintf 1.2fscanf 1.3fwrite 1.4fread 二、流和标准流 2.1流 2.2标准流 2.3示例 三、sscanf和sprintf 3.1sprintf 3.2sscanf 四、文件的随机读写 4.1fseek 4.2ftell 4.3rewind 五、文件读取结束的…

DeepSeek R1功能设计涉及的几个关键词

DeepSeek R1作为人工智能助手,其功能设计主要基于以下步骤: 字典过滤与词汇选择 使用蒸馏技术对候选词汇进行筛选和优化,确保选择的词汇与上下文语境相关且准确。候选词汇通过多源数据(如公开文档、专家分析等)进行训练…

jQuery小游戏(二)

jQuery小游戏(二) 今天是新年的第二天,本人在这里祝大家,新年快乐,万事胜意💕 紧接jQuery小游戏(一)的内容,我们开始继续往下咯😜 游戏中使用到的方法 key…

AnyThingLLM本地私有知识库搭建

***************************************************** 环境准备 操作系统:Windows11 内存:32GB RAM 存储:预留 300GB 可用空间 显存: 16G 网络: 100M带宽 前置准备: 已安装ollama环境 deepseek本地大模型 ***************************…

第六章 窗口管理

HarmonyOS通过窗口模块实现在同一块物理屏幕上提供多个应用界面显示和交互。 6.1 窗口开发概述 HarmonyOS通过窗口模块实现窗口管理,包括: 针对应用开发者,提供了界面显示和交互能力。 针对终端用户,提供了控制应用界面的方式。…

第05章 17 Contour 过滤器介绍与例子

vtkContourFilter 是 VTK(Visualization Toolkit)中的一个关键类,用于从输入数据生成等值线或等值面。它是基于阈值的过滤器,可以从标量字段中提取等值线或等值面。vtkContourFilter 的核心功能是根据用户指定的值生成等值线或等值…

【玩转全栈】--创建一个自己的vue项目

目录 vue介绍 创建vue项目 vue页面介绍 element-plus组件库 启动项目 vue介绍 Vue.js 是一款轻量级、易于上手的前端 JavaScript 框架,旨在简化用户界面的开发。它采用了响应式数据绑定和组件化的设计理念,使得开发者可以通过声明式的方式轻松管理数据和…