基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于UKF-IMM.html" title=UKF-IMM>UKF-IMM无迹卡尔曼滤波交互式多模型轨迹跟踪算法matlab仿真,对比EKF-IMMUKF

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

.............................................................................
% 绘制目标运动与传感器分布的图形,展示 IMM - UKF 算法的跟踪效果
%目标运动与传感器分布
figure   
% 绘制目标的真实轨迹
plot(TargetState(1,:),TargetState(4,:),'k','LineWidth',2);
hold on
% 循环处理每个节点
for i = 1:NumberNode
    % 绘制 IMM - UKF 算法的状态估计轨迹
    plot(Xfstate(1,:),Xfstate(4,:),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
    hold on
    % 绘制真实节点的位置
    plot(NodeDistribution(1,i),NodeDistribution(2,i),'bo','LineWidth',1);
    hold on
    % 在节点位置旁边标注节点编号
    text(NodeDistribution(1,i)+0.5,NodeDistribution(2,i)+0.5,num2str(i));
    hold on
    % 绘制 IMM - UKF 算法估计的节点位置
    plot(pest(1,i),pest(2,i),'rs','LineWidth',1);
    hold on
    % 添加图例说明不同线条和标记的含义
    legend('真实轨迹','IMM-UKF估计轨迹','真实节点','IMM-UKF节点');
    % 设置图形标题
    title('跟踪效果对比');
end
% 设置坐标轴为正方形,使图形比例合适
axis square

% 绘制目标运动与传感器分布的图形,展示 IMM - EKF 算法的跟踪效果
figure   
% 绘制目标的真实轨迹
plot(TargetState(1,:),TargetState(4,:),'k','LineWidth',2);
hold on
% 循环处理每个节点
for i = 1:NumberNode
    % 绘制 IMM - EKF 算法的状态估计轨迹
    plot(Xfstate2(1,:),Xfstate2(4,:),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
    hold on
    % 绘制真实节点的位置
    plot(NodeDistribution(1,i),NodeDistribution(2,i),'bo','LineWidth',1);
    hold on
    % 在节点位置旁边标注节点编号
    text(NodeDistribution(1,i)+0.5,NodeDistribution(2,i)+0.5,num2str(i));
    hold on
    % 绘制 IMM - EKF 算法估计的节点位置
    plot(pest2(1,i),pest2(2,i),'rs','LineWidth',1);
    hold on
    % 添加图例说明不同线条和标记的含义
    legend('真实轨迹','IMM-EKF估计轨迹','真实节点','IMM-EKF节点');
    % 设置图形标题
    title('跟踪效果对比');
end
% 设置坐标轴为正方形,使图形比例合适
axis square

% 绘制目标运动与传感器分布的图形,展示 UKF 算法的跟踪效果
figure   
% 绘制目标的真实轨迹
plot(TargetState(1,:),TargetState(4,:),'k','LineWidth',2);
hold on
% 循环处理每个节点
for i = 1:NumberNode
    % 绘制 UKF 算法的状态估计轨迹
    plot(Para_sensor3(1,:),Para_sensor3(4,:),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
    hold on
    % 绘制真实节点的位置
    plot(NodeDistribution(1,i),NodeDistribution(2,i),'bo','LineWidth',1);
    hold on
    % 在节点位置旁边标注节点编号
    text(NodeDistribution(1,i)+0.5,NodeDistribution(2,i)+0.5,num2str(i));
    hold on
    % 绘制 UKF 算法估计的节点位置
    plot(pest3(1,i),pest3(2,i),'rs','LineWidth',1);
    hold on
    % 添加图例说明不同线条和标记的含义
    legend('真实轨迹','UKF估计轨迹','真实节点','UKF节点');
    % 设置图形标题
    title('跟踪效果对比');
end
% 设置坐标轴为正方形,使图形比例合适
axis square

% 绘制不同算法的误差随时间变化的曲线
figure
% 绘制 IMM - UKF 算法的误差曲线
plot(tms,err1(1,:),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
% 绘制 IMM - EKF 算法的误差曲线
plot(tms,err2(1,:),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on;
% 绘制 UKF 算法的误差曲线
plot(tms,err3(1,:),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
% 添加图例,说明不同曲线对应的算法
legend('IMM - UKF ','IMM - EKF','UKF');
% 设置 x 轴标签为时间步
xlabel('Time Steps')
% 设置 y 轴标签为误差
ylabel('error')

% 绘制不同算法的平均误差柱状图
figure
% 绘制三个算法的平均误差柱状图
bar([mean(err1(1,:)),mean(err2(1,:)),mean(err3(1,:))]);
% 设置 x 轴标签,说明每个柱子对应的算法
xlabel(['1:IMM - UKF, 2:IMM - EKF, 3:UKF']);
% 设置 y 轴标签为误差
ylabel('error')
93

4.本算法原理

       在许多工程实践中,往往不能直接得到所需要的状态变量的真实值。例如雷达在探测目标时,可以通过回波信号等计算出目标的距离、速度和角度等信息。但雷达探测过程中会存在干扰(系统噪声、地杂波和非目标信号等)的问题,这些干扰会导致回波信号中夹杂有随机噪声。我们要在有随机噪声的回波信号中分离目标的运动状态量,准确的得到这个状态量往往是不可能的,只能根据观测信号估计这些状态变量。卡尔曼滤波就是这种通过估计或预测降低噪声影响的一种好的方法。特别是在线性系统中,卡尔曼滤波是最优的滤波算法。

       在轨迹跟踪问题中,系统状态通常随时间变化,并且受到过程噪声的影响;同时,对系统状态的观测也包含观测噪声。我们的目标是根据一系列的观测值来估计系统的真实状态。UKF 是一种用于非线性系统状态估计的滤波算法。与传统的扩展卡尔曼滤波(EKF)不同,UKF 不依赖于对非线性函数的线性化,而是通过一组确定性采样点(Sigma 点)来近似状态的概率分布,从而更准确地处理非线性问题。

       在kalman滤波算法中用到了状态转移方程和量测方程,被估计量随着时间的变化,呈现的是一个动态估计。在目标跟踪中,不需要知道目标的运动模型就能实时的修正目标的状态变量(速度、距离等),具有良好的适应性。但是当目标实施机动变化(突然加、减速或急转弯等),仅仅采用基本的kalman滤波算法往往得不到理想的结果。这时就需要采用自适应算法。交互多模型(IMM)就应用而生。

  目标交互多模型kalman滤波算法在机动目标跟踪领域得到广泛应用。IMM算法使用两个或者多个模型来描述工作过程中可能出现的状态,最后通过有效的加权融合进行系统状态估计,很好的克服了单个模型估计误差较大的问题。

       IMM 算法用于处理系统在不同模式下运行的情况。它假设系统存在多个可能的运行模式,每个模式对应一个不同的状态模型,通过在这些模型之间进行交互和切换,以适应系统模式的变化,从而提高状态估计的准确性。

5.完整程序

VVV


http://www.niftyadmin.cn/n/5839674.html

相关文章

MYSQL--一条SQL执行的流程,分析MYSQL的架构

文章目录 第一步建立连接第二部解析 SQL第三步执行 sql预处理优化阶段执行阶段索引下推 执行一条select 语句中间会发生什么? 这个是对 mysql 架构的深入理解。 select * from product where id 1;对于mysql的架构分层: mysql 架构分成了 Server 层和存储引擎层&a…

DeepSeek本地版安装简易教程(windows)

第一步:下载 第二步:安装 先安装ollama,安装完毕保持ollama运行,设置ollama通过防火墙,再安装deepseek,7b代表下载的r1版本,版本越高消耗资源越大 第三步:开放windows防火墙 第四步…

用一个例子详细说明python单例模式

单例模式是一种设计模式,它确保一个类只有一个实例,并提供一个全局访问点来访问该实例。这在需要控制资源(如数据库连接、文件系统等)的访问时非常有用。 下面是一个使用Python实现单例模式的例子: class Singleton:…

【C++语言】卡码网语言基础课系列----3. A+B问题III

文章目录 练习题目AB问题III具体代码实现 小白寄语诗词共勉 练习题目 AB问题III 题目描述: 你的任务依然是计算ab。 输入描述: 输入中每行是一对a和b。其中会有一对是0和0标志着输入结束,且这一对不要计算。 输出描述: 对于输入…

为AI聊天工具添加一个知识系统 之80 详细设计之21 符号逻辑 之1

本文要点 要点 前面我们讨论了本项目中的正则表达式。现在我们将前面讨论的正则表达式视为狭义的符号文本及其符号规则rule(认识的原则--认识上认识对象的约束),进而在更广泛的视角下将其视为符号逻辑及其符号原则principle(知识…

C# 实现 “Hello World” 教程

.NET学习资料 .NET学习资料 .NET学习资料 C# 作为一种广泛应用于.NET 开发的编程语言,以其简洁、高效和类型安全等特性,深受开发者喜爱。在踏入 C# 编程领域时,编写经典的 “Hello World” 程序是重要的起点,它能帮助我们快速熟…

Linux中使用unzip

安装命令 yum install unzip unzip常用选项和参数 选项 说明 -q 隐藏解压过程中的消息输出 -d /path/to/directory 指定解压文件的目标目录 -P password 如果.zip文件被密码保护,使用此选项可以指定打开文件所需的密码 解压命令 unzip 要解压的压缩包unz…

数据结构-Stack和栈

1.栈 1.1什么是栈 栈是一种特殊的线性表,只允许在固定的一段进行插入和删除操作,进行插入和删除操作的一段称为栈顶,另一端称为栈底。 栈中的数据元素遵顼后进先出LIFO(Last In First Out)的原则,就像一…